<li id="860oy"></li>
  • <samp id="860oy"><pre id="860oy"></pre></samp>
    <ul id="860oy"><pre id="860oy"></pre></ul>
  • <tr id="860oy"><menu id="860oy"></menu></tr>
  • <strike id="860oy"></strike>
    <samp id="860oy"><tbody id="860oy"></tbody></samp>
    <li id="860oy"></li>
  • 加載中...

    點擊這里給我發消息

    QQ群:417857029

    新產品·新技術信息

    MIT Engineers Develop Hydrogel Superglue, a Transparent Water Adhesive

    來源:specialchem2015年11月23日

    閱讀次數:

      Cambridge, MA -- The natural adhesive in all these cases is hydrogel -- a sticky mix of water and gummy material that creates a tough and durable bond.

      Now engineers at MIT have developed a method to make synthetic, sticky hydrogel that is more than 90 percent water. The hydrogel, which is a transparent, rubber-like material, can adhere to surfaces such as glass, silicon, ceramics, aluminum, and titanium with toughness comparable to the bond between tendon and cartilage on bone.

      In experiments to demonstrate its robustness, the researchers applied a small square of their hydrogel between two plates of glass, from which they then suspended a 55-pound weight. They also glued the hydrogel to a silicon wafer, which they then smashed with a hammer. While the silicon shattered, its pieces remained stuck in place.

      Such durability makes the hydrogel an ideal candidate for protective coatings on underwater surfaces such as boats and submarines. As the hydrogel is biocompatible, it may also be suitable for a range of health-related applications, such as biomedical coatings for catheters and sensors implanted in the body.

      "You can imagine new applications with this very robust, adhesive, yet soft material," says Xuanhe Zhao, the Robert N. Noyce Career Development Associate Professor in MIT's Department of Mechanical Engineering. For example, Zhao's group is currently exploring uses for the hydrogel in soft robotics, where the material may serve as synthetic tendon and cartilage, or in flexible joints.

      "It's a pretty tough and adhesive gel that's mostly water," Hyunwoo Yuk, a graduate student in mechanical engineering and the lead author of a paper on the work, says. "Basically, it's tough, bonding water."

      Zhao and his students publish their results today in the journal Nature Materials.

      A stretchy anchor

      A tough, flexible hydrogel that bonds strongly requires two characteristics, Zhao found: energy dissipation and chemical anchorage. A hydrogel that dissipates energy is essentially able to stretch significantly without retaining all the energy used to stretch it. A chemically anchored hydrogel adheres to a surface by covalently bonding its polymer network to that surface.

      "Chemical anchorage plus bulk dissipation leads to tough bonding," Zhao says. "Tendons and cartilage harness these, so we're really learning this principle from nature."

      In developing the hydrogel, Yuk mixed a solution of water with a dissipative ingredient to create a stretchy, rubbery material. He then placed the hydrogel atop various surfaces, such as aluminum, ceramic, glass, and titanium, each modified with functional silanes -- molecules that created chemical links between each surface and its hydrogel.

      The researchers then tested the hydrogel's bond using a standard peeling test, in which they measured the force required to peel the hydrogel from a surface. On average, they found the hydrogel's bond was as tough as 1,000 joules per square meter -- about the same level as tendon and cartilage on bone.

      Zhao group compared these results with existing hydrogels, as well as elastomers, tissue adhesives, and nanoparticle gels, and found that the new hydrogel adhesive has both higher water content and a much stronger bonding ability.

      "We basically broke a world record in bonding toughness of hydrogels, and it was inspired by nature," Yuk says.

      Sticky robotics

      In addition to testing the hydrogel's toughness with a hammer and a weight, Zhao and his colleagues explored its use in robotic joints, using small spheres of hydrogel to connect short pipes to simulate robotic limbs.

      "Hydrogels can act as actuators," Zhao says. "Instead of using conventional hinges, you can use this soft material with strong bonding to rigid materials, and it can give a robot many more degrees of freedom."

      The researchers also looked into its application as an electrical conductor. Yuk and other students added salts to a hydrogel sample, and attached the hydrogel to two metal plates connected via electrodes to an LED light. They found that the hydrogel enabled the flow of salt ions within the electrical loop, ultimately lighting up the LED.

      "We create extremely robust interfaces for hydrogel-metal hybrid conductors," Yuk adds.

      Zhao's group is currently most interested in exploring the hydrogel's use in soft robotics, as well as in bioelectronics.

      "Since the hydrogel contains over 90 percent water, the bonding may be regarded as a water adhesive, which is tougher than natural glues, such as in barnacles and mussels, and bio-inspired underwater glues," Zhao says. "The work has significant implications in understanding bio-adhesion, as well as practical applications such as in hydrogel coatings, biomedical devices, tissue engineering, water treatment, and underwater glues."

      This research was supported in part by the Office of Naval Research and the National Science Foundation.

      About MIT

      Research at MIT aims to develop innovative solutions to the world's most daunting challenges. From addressing the energy needs of tomorrow to improving cancer therapies, MIT's research efforts are enhanced through creative collaborations with leading research institutes and consortia around the world. Compiled here are just some of the MIT labs, centers and programs where cutting-edge research is taking place.

    相關閱讀

    本站所有信息與內容,版權歸原作者所有。網站中部分新聞、文章來源于網絡或會員供稿,如讀者對作品版權有疑議,請及時與我們聯系,電話:025-85303363 QQ:2402955403。文章僅代表作者本人的觀點,與本網站立場無關。轉載本站的內容,請務必注明"來源:林中祥膠粘劑技術信息網(www.423344.com)".

    網友評論

    ©2015 南京愛德福信息科技有限公司   蘇ICP備10201337 | 技術支持:南京聯眾網絡科技有限公司

    客服

    客服
    電話

    1

    電話:025-85303363

    手機:13675143372

    客服
    郵箱

    2402955403@qq.com

    若您需要幫助,您也可以留下聯系方式

    發送郵箱

    掃二
    維碼

    微信二維碼
    国产精品免费高清在线观看| 久久久久亚洲精品无码网址| 97超碰精品成人国产| 蜜臀98精品国产免费观看| 久久综合久久精品| 国内少妇偷人精品视频免费| 精品久久国产一区二区三区香蕉| 日韩三级一区二区| 伊人天堂av无码av日韩av| 日韩在线观看网站| 国产成人综合色视频精品| 日韩精品中文字幕在线| 国产精品99精品一区二区三区| 国产毛片片精品天天看视频| 麻豆国产精品免费视频| 2020国产精品永久在线观看| 久久久精品2019免费观看| 99在线观看精品免费99| 99re热久久精品这里都是精品| 老司机亚洲精品影院| 少妇人妻无码精品视频| 久久久无码精品亚洲日韩按摩 | 日韩精品一区二区三区四区| 国产在线观看一区二区三区精品 | 久久精品人妻中文系列| 69国产成人精品午夜福中文| 在线观看精品视频看看播放| 91久久亚洲国产成人精品性色| 91精品久久久久久久久中文字幕 | 久久精品国产男包| 亚洲国产精品xo在线观看| 亚洲91精品麻豆国产系列在线 | 色妞WWW精品免费视频| 国产精品毛片大码女人| 四虎精品影院在线观看视频| 国产精品自拍电影| 国产成人精品高清免费| 日韩精品无码免费专区网站| 亚洲日韩AV无码一区二区三区人| 日韩精品无码人妻免费视频| 日韩精品无码永久免费网站 |